🧭 Cognitive Router - Context-Aware Intelligent Request Routing
🧭 Cognitive Router - Beyond Static Routing
Vision: Route requests based on deep contextual understanding, agent capabilities, real-time performance, cost optimization, and predicted outcomes - not just round-robin or random selection.
Beyond Load Balancing
Traditional routing: Round-robin, least connections, random
Our innovation: Cognitive understanding of request needs + agent capabilities = optimal routing
Intelligent Routing Engine
1. Multi-Dimensional Routing Decision
class CognitiveRouter {
async route(request: Request): Promise<RoutingDecision> {
// Analyze request context deeply
const requestAnalysis = await this.analyzeRequest(request)
// Evaluate all available agents
const agentCapabilities = await this.evaluateAgents()
// Predict outcomes for each agent
const predictions = await Promise.all(
agentCapabilities.map(agent =>
this.predictOutcome(request, agent)
)
)
// Multi-objective optimization
const optimal = this.optimize({
predictions,
objectives: {
quality: 0.40, // 40% weight
latency: 0.25, // 25% weight
cost: 0.20, // 20% weight
reliability: 0.15 // 15% weight
},
constraints: this.getConstraints(request)
})
return {
selected_agent: optimal.agent,
confidence: optimal.confidence,
predicted_quality: optimal.predicted_quality,
predicted_latency: optimal.predicted_latency,
predicted_cost: optimal.predicted_cost,
reasoning: optimal.explanation,
fallback_options: optimal.alternatives
}
}
}
2. Request Understanding Engine
class RequestAnalyzer {
async analyzeRequest(request: Request): Promise<RequestProfile> {
// Semantic understanding
const semantic = await this.semanticAnalysis(request.content)
// Complexity estimation
const complexity = await this.estimateComplexity(request)
// Domain detection
const domain = await this.detectDomain(request)
// User intent classification
const intent = await this.classifyIntent(request)
// Historical context
const history = await this.getUserHistory(request.user_id)
return {
semantic_vector: semantic.embedding,
topics: semantic.topics,
entities: semantic.entities,
complexity: {
score: complexity.score,
factors: complexity.factors,
estimated_tokens: complexity.tokens
},
domain: {
primary: domain.primary,
secondary: domain.secondary,
confidence: domain.confidence
},
intent: {
type: intent.type,
urgency: intent.urgency,
requires_expertise: intent.expertise_needed
},
user_profile: {
history: history.interactions,
preferences: history.preferences,
satisfaction_trend: history.satisfaction
}
}
}
}
3. Agent Capability Matching
class CapabilityMatcher {
async matchAgentToRequest(
request: RequestProfile,
agents: Agent[]
): Promise<MatchScore[]> {
return Promise.all(
agents.map(async agent => {
// Domain expertise match
const domainMatch = this.matchDomain(
request.domain,
agent.specializations
)
// Complexity handling
const complexityMatch = this.matchComplexity(
request.complexity,
agent.capabilities
)
// Historical performance
const historicalMatch = await this.matchHistorical(
request,
agent.performance_history
)
// Current load & capacity
const capacityMatch = await this.matchCapacity(
request.estimated_tokens,
agent.current_load
)
// Collective memory insights
const memoryMatch = await this.matchFromMemory(
request.semantic_vector,
agent.successful_patterns
)
return {
agent: agent,
scores: {
domain: domainMatch,
complexity: complexityMatch,
historical: historicalMatch,
capacity: capacityMatch,
memory: memoryMatch
},
overall: this.calculateOverall({
domain: domainMatch,
complexity: complexityMatch,
historical: historicalMatch,
capacity: capacityMatch,
memory: memoryMatch
})
}
})
)
}
}
Innovation Features
1. Predictive Routing
// Predict outcome BEFORE routing
class PredictiveRouter {
async predictAndRoute(request: Request): Promise<RoutingDecision> {
const candidates = await this.getCandidateAgents(request)
// Predict outcome for each candidate
const predictions = await Promise.all(
candidates.map(async agent => {
// Use collective memory
const similarCases = await memory.findSimilar(
request.semantic_vector,
{ agent_id: agent.id, limit: 100 }
)
// Predict quality
const qualityPrediction = await this.predictQuality(
request,
agent,
similarCases
)
// Predict latency
const latencyPrediction = await this.predictLatency(
request.complexity,
agent.current_load
)
// Predict cost
const costPrediction = await this.predictCost(
request.estimated_tokens,
agent.pricing
)
return {
agent,
predicted_quality: qualityPrediction,
predicted_latency: latencyPrediction,
predicted_cost: costPrediction,
confidence: this.calculateConfidence(similarCases)
}
})
)
// Route to best predicted outcome
return this.selectBest(predictions)
}
}
2. Adaptive Learning Router
// Router learns from routing decisions
class AdaptiveLearningRouter {
async learn() {
// Collect routing outcomes
const outcomes = await this.getRecentOutcomes({
timeRange: '24h'
})
// Analyze routing decision quality
const analysis = outcomes.map(outcome => ({
decision: outcome.routing_decision,
actual_quality: outcome.actual_quality,
actual_latency: outcome.actual_latency,
actual_cost: outcome.actual_cost,
prediction_error: this.calculateError(outcome)
}))
// Update routing model
await this.updateRoutingModel(analysis)
// Adjust routing weights
this.adjustWeights({
based_on: analysis,
optimization_goal: 'minimize_regret'
})
}
}
3. Context-Aware Load Balancing
// Not just even distribution - smart distribution
class ContextAwareLoadBalancer {
async balance(request: Request): Promise<Agent> {
const agents = await this.getAvailableAgents()
// Consider not just current load, but type of load
const loads = await Promise.all(
agents.map(async agent => {
const currentRequests = await this.getCurrentRequests(agent)
// Calculate cognitive load (not just request count)
const cognitiveLoad = this.calculateCognitiveLoad({
requests: currentRequests,
complexity_scores: currentRequests.map(r => r.complexity)
})
// Calculate context switching cost
const contextSwitchCost = this.calculateSwitchCost(
currentRequests,
request
)
return {
agent,
numerical_load: currentRequests.length,
cognitive_load: cognitiveLoad,
context_switch_cost: contextSwitchCost,
total_load: cognitiveLoad + contextSwitchCost
}
})
)
// Route to agent with lowest TOTAL load (not just request count)
return loads.sort((a, b) =>
a.total_load - b.total_load
)[0].agent
}
}
4. Specialty Routing
routing_policies:
high_value_customer:
condition: customer.ltv > 50000
route_to:
- agent.sales.senior
- agent.sales.enterprise
fallback: agent.sales.standard
technical_complexity:
condition: request.complexity > 0.8
route_to:
- agent.support.technical
- agent.support.senior
fallback: agent.support.standard
multilingual:
condition: request.language != 'en'
route_to:
- agent.multilingual.{language}
fallback: agent.multilingual.translation_enabled
urgent:
condition: request.urgency == 'critical'
route_to:
priority_agents: true
max_wait_time: 5s
fallback: escalate_to_human
Integration with Your Stack
OSSA Extension
# schemas/v0.1.9/cognitive-routing.yaml
paths:
/route/cognitive:
post:
description: Cognitive routing decision
requestBody:
content:
application/json:
schema:
properties:
request: object
preferences: object
constraints: object
/route/analyze:
post:
description: Analyze routing decision quality
/route/policies:
get:
description: Get routing policies
post:
description: Update routing policies
Agent-Protocol Integration
interface CognitiveRoutingProtocol {
analyzeRequest(request: Request): Promise<RequestProfile>
matchCapabilities(profile: RequestProfile): Promise<MatchScore[]>
predictOutcome(request: Request, agent: Agent): Promise<Prediction>
selectOptimal(predictions: Prediction[]): Promise<RoutingDecision>
learn(outcome: RoutingOutcome): Promise<void>
}
Buildkit Commands
# Routing analysis
buildkit router analyze-decision --request REQ-001
buildkit router why-routed --request REQ-001 --agent agent-005
buildkit router optimize --metric quality
buildkit router test-policy --policy high_value --simulation
# Learning & optimization
buildkit router learn --from-outcomes --timerange 7d
buildkit router benchmark --compare-strategies
buildkit router tune-weights --objective minimize_latency
# Policy management
buildkit router policy create --name technical_support --config policy.yaml
buildkit router policy test --name technical_support --requests 1000
buildkit router policy deploy --name technical_support --canary 10%
Studio-UI Dashboard
Cognitive Routing Center:
- Real-time routing decisions with explanations
- Request analysis visualization
- Agent capability heat maps
- Prediction accuracy tracking
- Routing policy editor
- A/B test results
Performance Analytics:
- Routing decision quality over time
- Prediction vs actual comparison
- Agent utilization heat maps
- Cost optimization tracking
- Latency optimization trends
Advanced Features
1. Multi-Agent Orchestration
// Route to multiple agents for complex requests
class MultiAgentOrchestrator {
async orchestrate(complexRequest: Request): Promise<Response> {
// Decompose complex request
const subtasks = await this.decompose(complexRequest)
// Route each subtask to specialist
const routingDecisions = await Promise.all(
subtasks.map(subtask =>
this.routeSubtask(subtask)
)
)
// Execute in parallel or sequence
const results = await this.execute(routingDecisions, {
strategy: 'parallel_where_possible'
})
// Synthesize responses
return this.synthesize(results)
}
}
2. Fallback Cascade
// Intelligent fallback chain
class FallbackRouter {
async routeWithFallback(request: Request): Promise<Response> {
const fallbackChain = await this.buildFallbackChain(request)
for (const option of fallbackChain) {
try {
const response = await this.tryRoute(request, option.agent, {
timeout: option.timeout,
retry: option.retry_config
})
// Validate response quality
if (await this.validateQuality(response, option.min_quality)) {
return response
}
} catch (error) {
// Try next in chain
continue
}
}
// All options exhausted
throw new NoViableRouteError()
}
}
3. Cost-Aware Routing
// Optimize for cost while maintaining quality
class CostOptimizedRouter {
async routeWithBudget(
request: Request,
budget: CostBudget
): Promise<RoutingDecision> {
const candidates = await this.getCandidates(request)
// Filter by budget
const withinBudget = candidates.filter(agent =>
this.predictCost(request, agent) <= budget.max_cost
)
// Among budget-compliant options, select best quality
return this.selectBest(withinBudget, {
objective: 'maximize_quality',
constraint: 'cost <= budget'
})
}
}
Integration Points
#7)
OPA Policy Enforcement (- Route through policy engine
- Enforce rate limits
- Check data boundaries
- Validate provider selection
Agent-Brain Collective Memory (#13)
- Query successful patterns
- Learn from historical routing
- Share routing insights
#4)
Compliance-Engine Predictive Quality (- Predict routing outcome quality
- Prevent poor routing decisions
- Optimize for predicted success
#7, #8)
Agent-Mesh (- Service discovery
- Load balancing
- Circuit breaking
- mTLS security
Success Metrics
-
95% routing decisions optimal in retrospect -
30% improvement in quality-adjusted latency -
25% cost reduction while maintaining quality -
99% request satisfaction with routing -
<10ms routing decision time -
Zero routing-related outages
Implementation Timeline
Week 1-3: Request analysis engine
Week 4-6: Capability matching system
Week 7-9: Predictive routing
Week 10-12: Adaptive learning
Week 13-15: Context-aware load balancing
Week 16-18: Multi-agent orchestration
Week 19-20: Studio-UI dashboards
Related Issues
- #7 (Security + Policy - foundation)
- agent-mesh #7 (Service mesh)
- agent-brain #13 (Collective memory)
- compliance-engine #4 (Predictive quality)
- agent-buildkit #28 (Agent DNA)
Priority: Critical - Core routing intelligence
Innovation Level:
Status: Design phase
This creates truly intelligent routing!