🔮 Predictive Quality Oracle - AI Quality Before Deployment
🔮 Predictive Quality Oracle
Vision: Predict agent quality issues BEFORE they happen in production. Use AI to forecast performance, detect drift, and prevent failures.
Beyond Reactive Evaluation
Traditional: Test after deployment, fix when broken
Our innovation: Predict quality issues before deployment, prevent problems proactively
Predictive Systems
1. Quality Forecasting Engine
class QualityOracle {
async predictQualityScore(
agent: AgentDNA,
targetEnvironment: Environment
): Promise<QualityPrediction> {
// Historical performance analysis
const historical = await this.analyzeLineage(agent)
// Simulation-based testing
const simulated = await this.simulateInEnvironment(
agent,
targetEnvironment,
{ scenarios: 1000 }
)
// ML-based prediction
const predicted = await this.mlPredict({
agent_dna: agent.genome,
environment: targetEnvironment,
historical_data: historical,
simulation_results: simulated
})
return {
predicted_score: predicted.score,
confidence: predicted.confidence,
risk_factors: predicted.risks,
failure_probability: predicted.failure_prob,
recommended_actions: predicted.recommendations
}
}
}
2. Drift Detection Before It Happens
class DriftPredictor {
async predictDrift(agent: Agent): Promise<DriftPrediction> {
// Analyze trend lines
const trends = await this.analyzeTrends(agent, {
metrics: ['accuracy', 'latency', 'cost'],
window: '30d'
})
// Time series forecasting
const forecast = await this.forecast(trends, {
horizon: '7d',
confidence_interval: 0.95
})
// Detect anomaly patterns forming
const anomalyRisk = await this.detectEmergingAnomalies(
agent.recent_behavior
)
return {
drift_probability: forecast.drift_prob,
expected_drift_date: forecast.expected_date,
severity: this.calculateSeverity(forecast),
mitigation: this.recommendMitigation(forecast),
early_warning_triggers: anomalyRisk.triggers
}
}
}
3. Canary Prediction System
canary_prediction:
agent: agent.sales.v43
deployment_plan:
stage_1:
traffic: 5%
duration: 1h
predicted_outcomes:
success_rate: 0.92 ± 0.03
avg_latency: 245ms ± 50ms
error_rate: 0.008 ± 0.002
confidence: 0.87
recommendation: PROCEED
stage_2:
traffic: 25%
duration: 4h
predicted_outcomes:
success_rate: 0.91 ± 0.04
avg_latency: 280ms ± 60ms
error_rate: 0.012 ± 0.003
confidence: 0.82
risk_factors:
- increased_load_may_affect_latency
- edge_cases_in_segment_B
recommendation: PROCEED_WITH_CAUTION
stage_3:
traffic: 100%
predicted_outcomes:
success_rate: 0.89 ± 0.05
avg_latency: 320ms ± 80ms
error_rate: 0.018 ± 0.005
confidence: 0.75
risk_factors:
- performance_degradation_at_scale
- possible_context_overflow
recommendation: REVIEW_BEFORE_PROCEED
suggested_actions:
- increase_context_window_limit
- add_caching_layer
- consider_horizontal_scaling
AI-Powered Quality Analysis
1. Behavioral Modeling
// Build behavioral model of agent
class BehaviorModeler {
async buildModel(agent: Agent): Promise<BehaviorModel> {
// Learn from historical interactions
const interactions = await this.getInteractions(agent, {
limit: 10000
})
// Train behavioral model
const model = await this.trainModel(interactions, {
architecture: 'transformer',
objective: 'predict_next_action'
})
// Validate model accuracy
const validation = await this.validate(model)
return {
model: model,
accuracy: validation.accuracy,
can_predict: validation.can_predict,
typical_behaviors: this.extractBehaviors(model),
anomaly_detector: this.buildAnomalyDetector(model)
}
}
async detectBehavioralAnomaly(
agent: Agent,
interaction: Interaction
): Promise<AnomalyReport> {
const model = await this.getModel(agent)
// Compare actual vs expected behavior
const expected = await model.predict(interaction.context)
const actual = interaction.action
const divergence = this.calculateDivergence(expected, actual)
if (divergence > ANOMALY_THRESHOLD) {
return {
is_anomaly: true,
divergence_score: divergence,
expected_behavior: expected,
actual_behavior: actual,
possible_causes: this.diagnoseCauses(divergence),
severity: this.assessSeverity(divergence)
}
}
}
}
2. Counterfactual Analysis
// "What if" analysis for quality
class CounterfactualAnalyzer {
async analyzeWhatIf(
agent: Agent,
changes: ConfigChanges
): Promise<ImpactAnalysis> {
// Create virtual clone with changes
const virtualAgent = this.applyChanges(agent, changes)
// Simulate in historical scenarios
const scenarios = await this.getHistoricalScenarios({
limit: 1000,
representative: true
})
const results = await Promise.all(
scenarios.map(scenario =>
this.simulate(virtualAgent, scenario)
)
)
// Compare to actual historical performance
const comparison = this.compareToBaseline(
results,
agent.historical_performance
)
return {
predicted_impact: comparison.impact,
confidence: comparison.confidence,
improvement_probability: comparison.improvement_prob,
risk_of_degradation: comparison.degradation_prob,
key_insights: comparison.insights,
recommendation: this.makeRecommendation(comparison)
}
}
}
3. Root Cause Prediction
// Predict root causes before failures happen
class RootCausePredictor {
async predictRootCause(
symptom: Symptom
): Promise<RootCausePrediction> {
// Build causal graph from historical data
const causalGraph = await this.buildCausalGraph()
// Trace symptom back to potential causes
const potentialCauses = causalGraph.traceCauses(symptom)
// Rank by likelihood
const rankedCauses = await this.rankByLikelihood(
potentialCauses,
{
current_context: symptom.context,
historical_patterns: this.patterns
}
)
return {
most_likely_cause: rankedCauses[0],
all_potential_causes: rankedCauses,
confidence: this.calculateConfidence(rankedCauses),
prevention_strategies: this.suggestPrevention(rankedCauses),
monitoring_recommendations: this.suggestMonitoring(rankedCauses)
}
}
}
Integration with Your Stack
OSSA Extension
# schemas/v0.1.9/predictive-quality.yaml
paths:
/quality/predict:
post:
description: Predict quality before deployment
requestBody:
content:
application/json:
schema:
properties:
agent_dna: object
target_environment: string
prediction_horizon: string
/quality/drift/predict:
get:
description: Predict future drift
/quality/whatif:
post:
description: Counterfactual analysis
/quality/rootcause/predict:
post:
description: Predict root cause from symptoms
Buildkit Commands
# Predictive analysis
buildkit quality predict --agent agent-001 --environment prod
buildkit quality drift-forecast --agent agent-001 --horizon 7d
buildkit quality whatif --agent agent-001 --change 'temperature=0.9'
buildkit quality canary-simulate --agent agent-001 --traffic-plan gradual
# Root cause analysis
buildkit quality diagnose --symptom latency_increase
buildkit quality rootcause --predict --from-symptoms
# Behavioral analysis
buildkit quality behavior-model --agent agent-001
buildkit quality detect-anomaly --agent agent-001 --realtime
Studio-UI Dashboard
Predictive Quality Center:
- Quality forecasting graphs (7, 14, 30 day)
- Drift probability heat maps
- Canary stage predictions
- What-if scenario comparisons
- Root cause probability trees
- Behavioral anomaly alerts
Risk Assessment:
- Real-time risk scores
- Failure probability trends
- Early warning indicators
- Mitigation recommendations
- Confidence intervals
Advanced Features
1. Ensemble Predictions
// Combine multiple prediction methods
class EnsemblePredictor {
async predict(agent: Agent): Promise<Prediction> {
const predictions = await Promise.all([
this.statisticalPredict(agent), // Time series
this.mlPredict(agent), // Neural network
this.simulationPredict(agent), // Monte Carlo
this.expertSystemPredict(agent), // Rule-based
this.causalPredict(agent) // Causal inference
])
// Weight by historical accuracy
return this.weightedEnsemble(predictions, {
weights: this.adaptiveWeights()
})
}
}
2. Continuous Learning
// Prediction models improve over time
class ContinuousLearning {
async updateModels() {
// Compare predictions to actual outcomes
const accuracy = await this.measurePredictionAccuracy()
// Retrain models with new data
await this.retrainModels({
data: this.recentOutcomes,
focus_on_errors: true
})
// Adjust ensemble weights
await this.adjustWeights({
based_on: accuracy
})
}
}
3. Explainable Predictions
// Explain WHY a prediction was made
class ExplainablePredictor {
async explain(prediction: Prediction): Promise<Explanation> {
return {
primary_factors: [
{
factor: 'Recent latency trend',
contribution: 0.35,
evidence: 'Latency increased 15% over 7 days'
},
{
factor: 'Similar agent history',
contribution: 0.28,
evidence: 'Agent v41 had same pattern before failure'
},
{
factor: 'Load pattern change',
contribution: 0.22,
evidence: 'Traffic pattern shifted to edge cases'
}
],
confidence_factors: {
historical_precedent: 0.85,
data_quality: 0.90,
model_agreement: 0.75
},
counterfactuals: [
'If load stayed constant, failure prob would be 12% (vs 34%)',
'If context window increased, latency risk drops 40%'
]
}
}
}
Integration Points
Agent-Buildkit
- Pre-deployment quality checks
- Automatic rollback triggers
- Configuration recommendations
Agent-Tracer
- Real-time behavioral monitoring
- Anomaly detection alerts
- Drift early warnings
Workflow-Engine
- Automated quality gates
- Prediction-based deployment decisions
- Rollback automation
#3)
Compliance-Engine (- Evaluation prediction
- Performance forecasting
- Risk assessment
Compliance & Safety
Prediction Accuracy Monitoring
accuracy_tracking:
prediction_vs_actual:
tracked: true
alert_if_below: 0.75
false_positive_rate:
acceptable: 0.10
current: 0.08
false_negative_rate:
acceptable: 0.05 # More critical
current: 0.03
Ethical AI
- Explain all predictions
- No black-box decisions
- Human oversight for critical predictions
- Bias detection in predictions
Success Metrics
-
80%+ prediction accuracy -
95% of failures predicted 24h in advance -
50% reduction in production incidents -
90% confidence in go/no-go decisions -
<5% false positive rate -
Zero critical missed predictions
Implementation Timeline
Week 1-3: Quality forecasting engine
Week 4-6: Drift prediction system
Week 7-9: Behavioral modeling
Week 10-12: Counterfactual analysis
Week 13-15: Root cause prediction
Week 16-18: Ensemble & continuous learning
Week 19-20: Studio-UI dashboards
Related Issues
- #3 (Continuous Evaluation - foundation)
- agent-buildkit #24 (Agent Forge)
- agent-buildkit #28 (Agent DNA)
- agent-brain #13 (Collective Consciousness)
- agent-tracer #6 (Observability)
Priority: Critical - Prevent production issues
Innovation Level:
Status: Design phase
This gives you precognitive quality assurance!